Decreased t2 signal

Decreased t2 signal DEFAULT

Decreased Subcortical T2 FLAIR Signal Associated with Seizures

1. Cianfoni A, Caulo M, Cerase A, et al. . Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities. Eur J Radiol 2013;82:1964–72 10.1016/j.ejrad.2013.05.020 [PubMed] [CrossRef] [Google Scholar]

2. Cartagena AM, Young GB, Lee DH, et al. . Reversible and irreversible cranial MRI findings associated with status epilepticus. Epilepsy Behav 2014;33:24–30 10.1016/j.yebeh.2014.02.003 [PubMed] [CrossRef] [Google Scholar]

3. Giovannini G, Kuchukhidze G, McCoy MR, et al. . Neuroimaging alterations related to status epilepticus in an adult population: definition of MRI findings and clinical-EEG correlation. Epilepsia 2018;59(Suppl 2):120–27 10.1111/epi.14493 [PubMed] [CrossRef] [Google Scholar]

4. Adachi M, Mugikura S, Shibata A, et al. . Relative decrease in signal intensity of subcortical white matter in spontaneous intracranial hypotension on fluid-attenuated inversion recovery images. AJNR Am J Neuroradiol 2009;30:906–10 10.3174/ajnr.A1498 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Okanishi T, Saito Y, Fujii S, et al. . Low signal intensity and increased anisotropy on magnetic resonance imaging in the white matter lesion after head trauma: unrecognized findings of diffuse axonal injury. J Neurol Sci 2007;263:218–22 10.1016/j.jns.2007.06.048 [PubMed] [CrossRef] [Google Scholar]

6. Lee JH, Na DG, Choi KH, et al. . Subcortical low intensity on MR images of meningitis, viral encephalitis, and leptomeningeal metastasis. AJNR Am J Neuroradiol 2002;23:535–42 [PMC free article] [PubMed] [Google Scholar]

7. Ida M, Mizunuma K, Hata Y, et al. . Subcortical low intensity in early cortical ischemia. AJNR Am J Neuroradiol 1994;15:1387–93 [PMC free article] [PubMed] [Google Scholar]

8. Raghavendra S, Ashalatha R, Thomas SV, et al. . Focal neuronal loss, reversible subcortical focal T2 hypointensity in seizures with a nonketotic hyperglycemic hyperosmolar state. Neuroradiology 2007;49:299–305 10.1007/s00234-006-0189-6 [PubMed] [CrossRef] [Google Scholar]

9. Cross PA, Atlas S, Grossman R. MR evaluation of brain iron in children with cerebral infarction. AJNR Am J Neuroradiol 1990;11:341–48 [PMC free article] [PubMed] [Google Scholar]

10. Tain RW, Scotti AM, Li W, et al. . Imaging short-lived reactive oxygen species (ROS) with endogenous contrast MRI. J Magn Reson Imaging 2018;47:222–29 10.1002/jmri.25763 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Shin EJ, Jeong JH, Chung YH, et al. . Role of oxidative stress in epileptic seizures. Neurochem Int 2011;59:122–37 10.1016/j.neuint.2011.03.025 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Newton MR, Berkovic SF, Austin MC, et al. . Postictal switch in blood flow distribution and temporal lobe seizures. J Neurol Neurosurg Psychiatry 1992;55:891–94 10.1136/jnnp.55.10.891 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Brodersen P, Gjerris F. Regional cerebral blood flow in patients with chronic subdural hematomas. Acta Neurol Scand 1975;51:233–39 10.1111/j.1600-0404.1975.tb07604.x [PubMed] [CrossRef] [Google Scholar]

14. Holmes GL. Seizure-induced neuronal injury: animal data. Neurology 2002;59:S3–6 10.1212/wnl.59.9_suppl_5.s3 [PubMed] [CrossRef] [Google Scholar]

15. Cole AJ. Status epilepticus and periictal imaging. Epilepsia 2004;45(Suppl 4):72–77 10.1111/j.0013-9580.2004.04014.x [PubMed] [CrossRef] [Google Scholar]

16. Briellmann RS, Wellard RM, Jackson GD. Seizure‐associated abnormalities in epilepsy: evidence from MR imaging. Epilepsia 2005;46:760–66 10.1111/j.1528-1167.2005.47604.x [PubMed] [CrossRef] [Google Scholar]

17. Grillo E. Seizure-induced excitotoxicity: just considering it could be a fallacy—comment on: Cianfoni A, Caulo M, Cerase A. Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities (in press). Eur J Radiology 2013;82:e903–04 10.1016/j.ejrad.2013.08.027 [PubMed] [CrossRef] [Google Scholar]

Sours: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975331/

Decreased T2 signal in the thalami may be a sign of lysosomal storage disease

  • 1.

    Agamanolis D (2005) Metabolic and toxic disorders. In: Prayson R, Goldblum J (eds) Neuropathology. Elsevier Churchill Livingstone, Philadelphia, pp 339–372

    Google Scholar

  • 2.

    Pastores GM, Kolodny EH (2006) Lysosomal storage diseases. In: Swaiman KF, Ashwall S, Ferriero DM (eds) Pediatric neurology: principles and practice. Mosby Elsevier, Philadelphia, pp 659–714

    Google Scholar

  • 3.

    Autti T, Raininko R, Vanhanen S-L, Kallio M, Santavuori P (1994) MRI of the normal brain from early childhood to middle age. I Appearances on T2- and proton density-weighted images and occurrence of incidental high-signal foci. Neuroradiology 36:644–648

    PubMedCASArticle Google Scholar

  • 4.

    Autti T, Raininko R, Vanhanen S-L, Kallio M, Santavuori P (1994) MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity changes on T2-weighted images. Neuroradiology 36:649–651

    PubMedCASArticle Google Scholar

  • 5.

    Barkovich AJ (ed) (2005) Pediatric neuroimaging. Lippincott Williams & Wilkins, Philadelphia, pp 76–189

    Google Scholar

  • 6.

    Morita H, Ikeda S, Yamamoto K et al (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37:646–656

    PubMedCASArticle Google Scholar

  • 7.

    Hatanaka Y, Okano T, Oda K, Yamamoto K, Yoshida K (2003) Aceruloplasminemia with juvenile-onset diabetes mellitus caused by exon skipping in the ceruloplasmin gene. Intern Med 42:599–604

    PubMed Google Scholar

  • 8.

    Yonekawa M, Okabe T, Asamoto Y, Ohta M (1998) A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation: administration of fresh-frozen human plasma. Eur Neurol 42:157–162

    Article Google Scholar

  • 9.

    Al-Essa MA, Bakheet SM, Patay ZJ, Nounou RM, Ozand PT (1999) Cerebral fuorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography (FDG PET), MRI, and clinical observations in a patient with infantile G(M1) gangliosidosis. Brain Dev 21:559–562

    PubMedCASArticle Google Scholar

  • 10.

    Chen CY, Zimmerman RA, Lee CC, Chen FH, Yuh YS, Hsiao HS (1998) Neuroimaging findings in late infantile GM1 gangliosidosis. AJNR Am J Neuroradiol 19:1628–1630

    PubMedCAS Google Scholar

  • 11.

    Kobayashi O, Takashima S (1994) Thalamic hyperdensity on CT in infantile GM1-gangliosidosis. Brain Dev 16:472–474

    PubMedCASArticle Google Scholar

  • 12.

    Aydin K, Bakir B, Tatli B, Terzibasioglu E, Ozmen M (2005) Proton MR spectroscopy in three children with Tay-Sachs disease. Pediatr Radiol 35:1081–1085

    PubMedArticle Google Scholar

  • 13.

    Grosso S, Farnetani MA, Berardi R et al (2003) GM2 gangliosidosis variant B1 neuroradiological findings. J Neurol 250:17–21

    PubMedArticle Google Scholar

  • 14.

    Mugikura S, Takahashi S, Higano S, Kurihara N, Kon K, Sakamoto K (1996) MR findings in Tay-Sachs disease. J Comput Assist Tomogr 20:551–555

    PubMedCASArticle Google Scholar

  • 15.

    Yun YM, Lee SN (2005) A case report of Sandhoff disease. Korean J Ophthalmol 19:68–72

    PubMedArticle Google Scholar

  • 16.

    Yuksel A, Yalcinkaya C, Islak C, Gunduz E, Seven M (1999) Neuroimaging findings of four patients with Sandhoff disease. Pediatr Neurol 21:562–565

    PubMedCASArticle Google Scholar

  • 17.

    Hittmair K, Wimberger D, Bernert G, Mallek R, Schindler EG (1996) MRI in a case of Sandhoff’s disease. Neuroradiology 38 [Suppl 1]:S78–S80

    Google Scholar

  • 18.

    Caliskan M, Ozmen M, Beck M, Apak S (1993) Thalamic hyperdensity – is it a diagnostic marker for Sandhoff disease. Brain Dev 15:387–388

    PubMedCASArticle Google Scholar

  • 19.

    Koelfen W, Freund M, Jaschke W, Koenig S, Schultze C (1994) GM-2 gangliosidosis (Sandhoff’s disease): two year follow-up by MRI. Neuroradiology 36:152–154

    PubMedCASArticle Google Scholar

  • 20.

    Zafeiriou DI, Anastasiou AL, Michelakaki EM, Augoustidou-Savvopoulou PA, Katzos GS, Kontopoulos EE (1997) Early infantile Krabbe disease: deceptively normal magnetic resonance imaging and serial neurophysiological studies. Brain Dev 19:488–491

    PubMedCASArticle Google Scholar

  • 21.

    Zafeiriou DI, Michelakaki EM, Anastasiou AL, Gombakis NP, Kontopoulos EE (1996) Serial MRI and neurophysiological studies in late-infantile Krabbe disease. Pediatr Neurol 15:240–244

    PubMedCASArticle Google Scholar

  • 22.

    Vanhanen SL, Raininko R, Santavuori P (1994) Early differential diagnosis of infantile neuronal ceroid lipofuscinosis, Rett syndrome, and Krabbe disease by CT and MR. AJNR Am J Neuroradiol 15:1443–1453

    PubMedCAS Google Scholar

  • 23.

    Bernardi B, Fonda C, Franzoni E, Marchiani V, Della Guistina E, Zimmerman RA (1994) MRI and CT in Krabbe’s disease: case report. Neuroradiology 36:477–479

    PubMedCASArticle Google Scholar

  • 24.

    Finelli DA, Tarr RW, Sawyer RN, Horwitz SJ (1994) Deceptively normal MR in early infantile Krabbe disease. AJNR Am J Neuroradiol 15:167–171

    PubMedCAS Google Scholar

  • 25.

    Barone R, Bruhl K, Stoeter P, Fiumara A, Pavone L, Beck M (1996) Clinical and neuroradiological findings in classic infantile and late-onset globoid-cell leukodystrophy (Krabbe disease). Am J Med Genet 63:209–217

    PubMedCASArticle Google Scholar

  • 26.

    Percy AK, Odrezin GT, Knowles PD, Rouah E, Armstrong DD (1994) Globoid cell leukodystrophy: comparison of neuropathology with magnetic resonance imaging. Acta Neuropathol (Berl) 88:26–32

    CASArticle Google Scholar

  • 27.

    Autti T, Raininko R, Haltia M et al (1997) Aspartylglucosaminuria: radiologic course of the disease with histopathologic correlation. J Child Neurol 12:369–375

    PubMedCAS Google Scholar

  • 28.

    Ara JR, Mayayo E, Marzo ME, Guelbenzu S, Chabas A, Pina MA, Calderon C (1999) Neurological impairment in alpha-mannosidosis: a longitudinal clinical and MRI study of a brother and sister. Childs Nerv Syst 15:369–371

    PubMedCASArticle Google Scholar

  • 29.

    Inui K, Akagi M, Nishigaki T, Muramatsu T, Tsukamoto H, Okada S (2000) A case of chronic infantile type of fucosidosis: clinical and magnetic resonance image findings. Brain Dev 22:47–49

    PubMedCASArticle Google Scholar

  • 30.

    Autti T, Raininko R, Launes J, Nuutila A, Santavuori P (1992) Jansky-Bielschowsky variant disease: CT, MRI and SPECT findings. Pediatric Neurol 8:121–126

    CASArticle Google Scholar

  • 31.

    Vanhanen SL, Raininko R, Autti T, Santavuori P (1996) MRI evaluation of the brain in infantile neuronal ceroid lipofuscinosis. Part 2: MRI findings in 21 patients. J Child Neurol 10:444–450

    Article Google Scholar

  • 32.

    Autti T, Raininko R, Vanhanen SL, Santavuori P (1996) MRI of neuronal ceroid lipofuscinosis. I. Cranial MRI of 30 patients with juvenile neuronal ceroidl lipofuscinosis. Neuroradiology 38:476–782

    PubMedCAS Google Scholar

  • 33.

    Topçu M, Tan H, Yalnızoğlu D et al (2004) Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: clinical, neurophysiological, neuroradiological and histopathologic studies. Turk J Pediatr 46:1–10

    PubMed Google Scholar

  • 34.

    Frei KP, Patronas NJ, Crutchfield KE. Altarescu G, Schiffmann R (1998) Mucolipidosis type IV: characteristic MRI findings. Neurology 51:565–569

    PubMedCAS Google Scholar

  • 35.

    Inglese M, Nusbaum AO, Pastores GM, Gianutsos J, Kolodny EH, Gonen O (2005) MR imaging and proton spectroscopy of neural injury in late-onset GM2 gangliosidosis. AJNR Am J Neuroradiol 26:2037–2042

    PubMed Google Scholar

  • 36.

    Gururaj A, Sztriha L, Hertecant, J, Johansen JG, Georgiou T, Campos Y, Drousiotou A, d’Azzo A (2005) Magnetic resonance imaging findings and novel mutations in GM1 gangliosidosis. J Child Neurol 20:57–60

    PubMed Google Scholar

  • 37.

    Streifler JY, Gornish M, Hadar H, Gadoth N (1993) Brain imaging in late-onset GM2 gangliosidosis. Neurology 43:2055–2058

    PubMedCAS Google Scholar

  • 38.

    Uyama E, Terasaki T, Watanabe S, Naito M, Owada M, Araki S, Ando M (1992) Type 3 GM1 gangliosidosis: characteristic MRI findings correlated with dystonia. Acta Neurol Scand 86:609–615

    PubMedCAS Google Scholar

  • 39.

    Fukumizu M, Yoshikawa H, Takashima S, Sakuragawa N, Kurokawa T (1992) Tay-Sachs disease: progression of changes on neuroimaging in four cases. Neuroradiology 34:483–486

    PubMedCASArticle Google Scholar

  • 40.

    Seitz D, Grodd W, Schwab A, Seeger U, Klose U, Nagele T (1998) MR imaging and localized proton MR spectroscopy in late infantile neuronal ceroid lipofuscinosis. AJNR Am J Neuroradiol 19:1373–1377

    PubMedCAS Google Scholar

  • 41.

    Choi S, Enzmann DR (1993) Infantile Krabbe disease: complementary CT and MR findings. AJNR Am J Neuroradiol 14:1164–1166

    PubMedCAS Google Scholar

  • 42.

    Chang YC, Huang CC, Chen CY, Zimmerman RA (2000) MRI in acute neuropathic Gaucher’s disease. Neuroradiology 42:48–50

    PubMedCASArticle Google Scholar

  • 43.

    Moore DF, Ye F, Schiffmann R, Butman JA (2003) Increased signal intensity in the pulvinar on T1-weighted images: a pathognomonic MR imaging sign of Fabry disease. AJNR Am J Neuroradiol 24:1096–1101

    PubMed Google Scholar

  • 44.

    Politei JM, Capizzano AA (2006) Magnetic resonance image findings in 5 young patients with Fabry disease. Neurologist 12:103–105

    PubMedArticle Google Scholar

  • 45.

    Gupta S, Ries M, Kotsopoulos S, Schiffmann R (2005) The relationship of vascular glycolipid storage to clinical manifestations of Fabry disease: a cross-sectional study of a large cohort of clinically affected heterozygous women. Medicine (Baltimore) 84:261–268

    CASArticle Google Scholar

  • 46.

    Takanashi J, Barkovich AJ, Dillon WP, Sherr EH, Hart KA, Packman S (2003) T1 hyperintensity in the pulvinar: key imaging feature for diagnosis of Fabry disease. AJNR Am J Neuroradiol 24:916–921

    PubMed Google Scholar

  • 47.

    Morse RP, Kleta R, Alroy J, Gahl WA (2005) Novel form of intermediate salla disease: clinical and neuroimaging features. J Child Neurol 20:814–816

    PubMedArticle Google Scholar

  • 48.

    Parazzini C, Arena S, Marchetti L et al (2003) Infantile sialic acid storage disease: serial ultrasound and magnetic resonance imaging features. AJNR Am J Neuroradiol 24:398–400

    PubMed Google Scholar

  • 49.

    Linnankivi T, Lonnqvist T, Autti T (2003) A case of Salla disease with involvement of the cerebellar white matter. Neuroradiology 45:107–109

    PubMedCAS Google Scholar

  • 50.

    Sonninen P, Autti T, Varho T, Hamalainen M, Raininko R (1999) Brain involvement in Salla disease. AJNR Am J Neuroradiol 20:433–443

    PubMedCAS Google Scholar

  • 51.

    Varho T, Jaaskelainen S, Tolonen U, Sonninen P, Vainionpaa L, Aula P, Sillanpaa M (2000) Central and peripheral nervous system dysfunction in the clinical variation of Salla disease. Neurology 55:99–104

    PubMedCAS Google Scholar

  • 52.

    Haataja L, Parkkola R, Sonninen P et al (1994) Phenotypic variation and magnetic resonance imaging (MRI) in Salla disease, a free sialic acid storage disorder. Neuropediatrics 25:238–244

    PubMedCAS Google Scholar

  • 53.

    Melis D, Parenti G, Della Casa R et al (2004) Brain damage in glycogen storage disease type I. J Pediatr 144:637–642

    PubMedCASArticle Google Scholar

  • 54.

    Gutschalk A, Harting I, Cantz M, Springer C, Rohrschneider K, Meinck HM (2004) Adult alpha-mannosidosis: clinical progression in the absence of demyelination. Neurology 63:1744–1746

    PubMedCAS Google Scholar

  • 55.

    Patlas M, Shapira MY, Nagler A, Sheffer R, Gomori JM (2001) MRI of mannosidosis. Neuroradiology 43:941–943

    PubMedCASArticle Google Scholar

  • 56.

    Dietemann JL, Filippi de la Palavesa MM, Tranchant C, Kastler B (1990) MR findings in mannosidosis. Neuroradiology 32:485–487

    PubMedCASArticle Google Scholar

  • 57.

    Galluzzi P, Rufa A, Balestri P, Cerase A, Federico A (2001) MR brain imaging of fucosidosis type I. AJNR Am J Neuroradiol 22:777–780

    PubMedCAS Google Scholar

  • 58.

    Ismail EA, Rudwan M, Shafik MH (1999) Fucosidosis: immunological studies and chronological neuroradiological changes. Acta Paediatr 88:224–227

    PubMedCASArticle Google Scholar

  • 59.

    Terespolsky D, Clarke JT, Blaser SI (1006) Evolution of the neuroimaging changes in fucosidosis type II. J Inherit Metab Dis 19:775–781

    Article Google Scholar

  • 60.

    Provenzale JM, Barboriak DP, Sims K (1995) Neuroradiologic findings in fucosidosis, a rare lysosomal storage disease. AJNR Am J Neuroradiol 16:809–813

    PubMedCAS Google Scholar

  • 61.

    Confort-Goyny S, Chabrol B, Vion-Dury J, Mancini J, Cozzone PJ (1993) MRI and localized proton MRS in early infantile form of neuronal ceroid-lipofuscinosis. Pediatr Neurol 9:57–60

    Article Google Scholar

  • 62.

    Matheus MG, Castillo M, Smith JK, Armao D, Towle D, Muenzer J (2004) Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology 46:666–672

    PubMedArticle Google Scholar

  • 63.

    Gabrielli O, Polonara G, Regnicolo L, Petroni V, Scarabino T, Coppa GV, Salvolini U (2004) Correlation between cerebral MRI abnormalities and mental retardation in patients with mucopolysaccharidoses. Am J Med Genet 125:224–231

    Article Google Scholar

  • 64.

    Barone R, Parano E, Trifiletti RR, Fiumara A, Pavone P (2002) White matter changes mimicking a leukodystrophy in a patient with mucopolysaccharidosis: a characterization by MRI. J Neurol Sci 195:171–175

    PubMedArticle Google Scholar

  • 65.

    Barone R, Nigro F, Triulzi F, Musumeci S, Fiumara A, Pavone L (1999) Clinical and neuroradiological follow-up in mucopolysaccharidosis type III (Sanfilippo syndrome). Neuropediatrics 30:270–274

    PubMedCASArticle Google Scholar

  • 66.

    Hughes DG, Chadderton RD, Cowie RA, Wraith JE, Jenkins JP (1997) MRI of the brain and craniocervical junction in Morquio’s disease. Neuroradiology 39:381–385

    PubMedCASArticle Google Scholar

  • 67.

    Zafeiriou DI, Savvopoulou Augoustidou PA, Sewell A et al (2001) Serial magnetic resonance imaging findings in mucopolysaccharidosis IIIB (Sanfilippo’s syndrome B). Brain Dev 23:385–389

    PubMedCASArticle Google Scholar

  • 68.

    Petitti N, Holder CA, Williams DW 3rd (1997) Mucopolysaccharidosis III (San Filippo syndrome) type B: cranial imaging in two cases. J Comput Assist Tomogr 21:897–899

    PubMedCASArticle Google Scholar

  • 69.

    Shinomiya N, Nagayama T, Fujioka Y, Aoki T (1996) MRI in the mild type of mucopolysaccharidosis II (Hunter’s syndrome). Neuroradiology 38:483–485

    PubMedCAS Google Scholar

  • 70.

    Lee C, Dineen TE, Brack M, Kirsch JE, Runge VM (1994) The mucopolysaccharidoses: characterization by cranial MR imaging. AJNR Am J Neuroradiol 14:1285–1292

    Google Scholar

  • 71.

    Parsons VJ, Hughes DG, Wraith JE (1996) Magnetic resonance imaging of the brain, neck and cervical spine in mild Hunter’s syndrome (mucopolysaccharidoses type II). Clin Radiol 51:719–723

    PubMedCASArticle Google Scholar

  • 72.

    Buyukgebiz B, Eroglu Y, Kovanlikaya I, Sen A, Buyukgebiz A (1995) Maroteaux-Lamy syndrome associated with growth hormone deficiency. J Pediatr Endocrinol Metab 8:305–307

    PubMedCAS Google Scholar

  • 73.

    Murata R, Nakajima S, Tanaka A, Miyagi N, Matsuoka O, Kogame S, Inoue Y (1989) MR imaging of the brain in patients with mucopolysaccharidosis. AJNR Am J Neuroradiol 10:1165–1170

    PubMedCAS Google Scholar

  • 74.

    Gabrielli O, Salvolini U, Maricotti M, Mariani MG, Coppa GV, Giorgi PL (1992) Cerebral MRI in two brothers with mucopolysaccharidosis type 1 and different genotypes. Neuroradiology 34:313–315

    PubMedCASArticle Google Scholar

  • 75.

    Shimoda-Matsubayashi S, Kuru Y, Sumie H, Ito T, Hattori N, Okuma Y, Mizuno Y (1990) MRI findings in the mild type of mucopolysaccharidosis II (Hunter’s syndrome). Neuroradiology 32:328–330

    PubMedCASArticle Google Scholar

  • 76.

    Rauch RA, Friloux LA 3rd, Lott I (1989) MR imaging of cavitary lesions in the brain with Hurler/Scheie. AJNR Am J Neuroradiol 10 (5 Suppl):S1–S3

    PubMedCAS Google Scholar

  • 77.

    Lee CC, Chen CY, Chou TY, Chen FH, Lee CC, Zimmerman RA (1996) Cerebral manifestations of Pompe disease in an infant. AJNR Am J Neuroradiol 17:321–322

    PubMedCAS Google Scholar

  • 78.

    Al-Essa MA, Bakheet SM, Patay ZJ, Powe JE, Ozand PT (1999) Normal fluorine-18-labelled 2-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging of the brain in Wolman disease. J Inherit Metab Dis 22:846–848

    PubMedCASArticle Google Scholar

  • 79.

    Yang YL, Sun F, Zhang Y et al (2006) Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome. Chin Med J 118:373–377

    Google Scholar

  • 80.

    Mannan AA, Sharma MC, Shrivastava P et al (2004) Leigh’s syndrome. Indian J Pediatr 71:1029–1033

    PubMedCAS Google Scholar

  • 81.

    Crimi M, Papadimitriou A, Galbiati S et al (2004) A new mitochondrial DNA mutation in ND3 gene causing severe Leigh syndrome with early lethality. Pediatr Res 55:842–846

    PubMedArticle Google Scholar

  • 82.

    Filiano JJ, Goldenthal MJ, Mamourian AC, Hall CC, Marin-Garcia J (2002) Mitochondrial DNA depletion in Leigh syndrome. Pediatr Neurol 26:239–242

    PubMedArticle Google Scholar

  • 83.

    Cacic M, Wilichowski E, Mejaski-Bosnjak V et al (2001) Cytochrome c oxidase partial deficiency-associated Leigh disease presenting as an extrapyramidal syndrome. J Child Neurol 16:616–619

    PubMedCAS Google Scholar

  • 84.

    Nagashima T, Mori M, Katayama K et al (1999) Adult Leigh syndrome with mitochondrial DNA mutation at 8993. Acta Neuropathol (Berl) 97:416–422

    CASArticle Google Scholar

  • 85.

    Chu BC, Terae S, Takahashi C et al (1999) MRI of the brain in the Kearns-Sayre syndrome: report of four cases and a review. Neuroradiology 41:759–764

    PubMedCASArticle Google Scholar

  • 86.

    Nakagawa E, Hirano S, Yamanouchi H, Goto Y, Nonaka I, Takashima S (1994) Progressive brainstem and white matter lesions in Kearns-Sayre syndrome: a case report. Brain Dev 16:416–418

    PubMedCASArticle Google Scholar

  • 87.

    Kim IO, Kim JH, Kim WS, Hwang YS, Yeon KM, Han MC (1996) Mitochondrial myopathy-encephalopathy-lactic acidosis-and strokelike episodes (MELAS) syndrome: CT and MR findings in seven children. AJR Am J Roentgenol 166:641–645

    PubMedCAS Google Scholar

  • 88.

    Wray SH, Provenzale JM, Johns DR, Thulborn KR (1995) MR of the brain in mitochondrial myopathy. AJNR Am J Neuroradiol 16:1167–1173

    PubMedCAS Google Scholar

  • 89.

    Nolli M, Barbieri A, Pinna C, Pasetto A, Nicosia F (2005) Wernicke’s encephalopathy in a malnourished surgical patient: clinical features and magnetic resonance imaging. Acta Anaesthesiol 49:1566–1570

    CASArticle Google Scholar

  • 90.

    Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE (2003) Wernicke encephalopathy: MR findings and clinical presentation. Eur Radiol 13:1001–1009

    PubMed Google Scholar

  • 91.

    Oka M, Terae S, Kobayashi R et al (2001) Diffusion-weighted MR findings in a reversible case of acute Wernicke encephalopathy. Acta Neurol Scand 104:178–181

    PubMedCASArticle Google Scholar

  • 92.

    Antunez E, Estruch R, Cardenal C, Nicolas JM, Fernandez-Sola J, Urbano-Marquez A (1998) Usefulness of CT and MR imaging in the diagnosis of acute Wenicke’s encephalopathy. AJR Am J Roentgenol 171:1131–1137

    PubMedCAS Google Scholar

  • 93.

    Hahn JS, Berquist W, Alcorn DM, Chamberlain L, Bass D (1998) Wernicke encephalopathy and beriberi during total parenteral nutrition attributable to multivitamin infusion shortage. Pediatrics 101:E10

    PubMedCASArticle Google Scholar

  • 94.

    Huang CC, Chu NS, Yen TC, Wai YY, Lu CS (2003) Dopamine transporter binding in Wilson’s disease. Can J Neurol Sci 30:163–167

    PubMed Google Scholar

  • 95.

    Wu JC, Huang CC, Jeng LB, Chu NS (2000) Correlation of neurological manifestations and MR images in a patient with Wilson’s disease after liver transplantation. Acta Neurol Scand 102:134–139

    Article Google Scholar

  • 96.

    Alanen A, Komu M, Penttinen M, Leino R (1999) Magnetic resonance imaging and proton spectroscopy in Wilson’s disease. Br J Radiol 72:749–756

    PubMedCAS Google Scholar

  • 97.

    Takahashi W, Yoshii F, Shinohara Y (1996) Reversible magnetic resonance imaging lesions in Wilson’s disease: clinical-anatomical correlation. J Neuroimaging 6:246–248

    PubMedCAS Google Scholar

  • 98.

    Huang CC, Chu NS (1998) Acute dystonia with thalamic and brainstem lesions after initial penicillamine treatment in Wilson’s disease. Eur Neurol 39:32–37

    PubMedCASArticle Google Scholar

  • 99.

    Sener RN (1993) Wilson’s disease: MRI demonstration of cavitations in basal ganglia and thalami. Pediatr Radiol 23:157

    PubMedCASArticle Google Scholar

  • 100.

    Saatci I, Topcu M, Baltaoglu FF, Kose G, Yalaz K, Renda Y, Besim A (1997) Cranial MR findings in Wilson’s disease. Acta Radiol 38:250–258

    PubMedCASArticle Google Scholar

  • 101.

    Huang CC, Chu NS (1996) Wilson’s disease: resolution of MRI lesions following long-term oral zinc therapy. Acta Neurol Scand 93:215–218

    PubMedCASArticle Google Scholar

  • 102.

    Binesh N, Huda A, Thomas MA et al (2006) Hepatic encephalopathy: a neurochemical, and neurophysiological study. J Appl Clin Med Phys 7:86–96

    PubMedArticle Google Scholar

  • 103.

    Miyaoka T, Yasukawa R, Mihara T et al (2005) Fluid-attenuated inversion-recovery MR imaging in schizophrenia-associated with idiopathic unconjugated hyperbilirubinemia (Gilbert’s syndrome). Eur Psychiatry 20:327–331

    PubMedArticle Google Scholar

  • 104.

    Yilmaz Y, Ekinci G (2002) Thalamic involvement in a patient with kernikterus. Eur Radiol 12:1837–1839

    PubMedArticle Google Scholar

  • 105.

    Ozdoba C, Pfenninger J, Schroth G (1997) Initial and follow-up MRI in a case of early diagnosed Reye’s syndrome. Neuroradiology 39:495–498

    PubMedCASArticle Google Scholar

  • 106.

    Hoon AH Jr, Reinhardt EM, Kelley RI, Breiter SN, Morton DH, Naidu SB, Johnston MV (1997) Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes. J Pediatr 131:240–245

    PubMedArticle Google Scholar

  • 107.

    Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    PubMedCASArticle Google Scholar

  • 108.

    Majoie CB, Mourmans JM, Akkerman EM, Duran M, Poll-The BT (2004) Neonatal citrullemia: comparison of conventional MR, diffusion-weighted, and diffusion tensor findings. AJNR Am J Neuroradiol 25:32–35

    PubMed Google Scholar

  • 109.

    Takei Y, Akahane C, Ikeda S (2003) Osmotic demyelination syndrome: reversible MRI findings in bilateral cortical lesions. Intern Med 42:867–870

    PubMed Google Scholar

  • 110.

    Bourgouin P, Chalk C, Richardson J, Duong H, Vezina J (1995) Subcortical white matter lesions in osmotic demyelination syndrome. AJNR Am J Neuroradiol 16:1495–1497

    PubMedCAS Google Scholar

  • 111.

    Weber U, Huppe T, Niehaus L (2000) CT and MRI in severe hypophosphataemia with central nervous system involvement. Neuroradiology 42:112–114

    PubMedCASArticle Google Scholar

  • 112.

    Porto L, Lanferman H, Moller-Hartmann W, Jacobi G, Zanella F (1999) Acute necrotising encephalopathy of childhood after exanthema subitum outside Japan or Taiwan. Neuroradiology 41:732–734

    PubMedCASArticle Google Scholar

  • 113.

    Neilson DE, Eiben RM, Waniewski S et al (2003) Autosomal dominant acute necrotizing encephalopathy. Neurology 61:226–230

    PubMedCASArticle Google Scholar

  • 114.

    Hartfield DS, Loewy JA, Yager JY (1999) Transient thalamic changes on MRI in a child with hypernatremia. Pediatr Neurol 20:60–62

    PubMedCASArticle Google Scholar

  • 115.

    Kobari M, Nogawa S, Sugimoto Y, Fukuuchi Y (1997) Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology 48:645–649

    PubMedCAS Google Scholar

  • 116.

    Nishio H, Kodama S, Matsuo T, Ichihashi M, Ito H, Fujiwara Y (1988) Cockayne syndrome: magnetic resonance images of the brain in a severe form with early onset. J Inherit Metab Dis 11:88–102

    PubMedCASArticle Google Scholar

  • 117.

    Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318

    CASArticle Google Scholar

  • 118.

    Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    CASArticle Google Scholar

  • 119.

    Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712

    CASArticle Google Scholar

  • 120.

    Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Academic Press, London, p 587

    Google Scholar

  • 121.

    Holmberg V, Lauronen L, Autti T, Santavuori P, Savukoski M, Uvebrant P, Hofman I, Peltonen L, Jarvela I (2000) Phenotype-genotype correlation in eight patients with Finnish variant late infantile NCL (CLN5). Neurology 55:579–581

    PubMedCAS Google Scholar

  • Sours: https://link.springer.com/article/10.1007/s00234-007-0220-6
    1. Software development udemy
    2. Hilda flores gonzález
    3. 5mm felt

    Decreased T2 signal in the thalami may be a sign of lysosomal storage disease

    Introduction: Lysosomal disorders are rare and are caused by genetically transmitted lysosomal enzyme deficiencies. A decreased T2 signal in the thalamus has occasionally been reported.

    Aims: Because the finding of bilateral abnormal signal intensity of the thalamus on T2-weighted images has not been systematically reviewed, and its value as a diagnostic tool critically evaluated, we carried out a systematic review of the literature.

    Methods: Articles in English with 30 trios of keywords were collected from PubMed. Exclusion criteria were lack of conventional T2-weighted images in the protocol and not being a human study. Finally, 111 articles were included. The thalamus was considered affected only if mentioned in the text or in the figure legends.

    Results: Some 117 patients with various lysosomal diseases and five patients with ceruloplasmin deficiency were reported to have a bilateral decrease in T2 signal intensity. At least one article reported a bilateral decrease in signal intensity of the thalami on T2-weighted images in association with GM1 and GM2 gangliosidosis and with Krabbe's disease, aspartylglucosaminuria, mannosidosis, fucosidosis, and mucolipidosis IV. Furthermore, thalamic alteration was a consistent finding in several types of neuronal ceroid lipofuscinosis (NCL) including CLN1 (infantile NCL), CLN2 (classic late infantile NCL), CLN3 (juvenile NCL), CLN5 (Finnish variant late infantile NCL), and CLN7 (Turkish variant late infantile NCL).

    Conclusion: A decrease in T2 signal intensity in the thalami seems to be a sign of lysosomal disease.

    Sours: https://pubmed.ncbi.nlm.nih.gov/17334752/
    T1 vs T2 weighted MRI images: How to tell the difference

    Throwing a voluptuous look at the picture presented to him, Sungam threw off his robe. His five, in a businesslike way, penetrated her crevice. Even when she was a teenager, one girl from the Order of Assassins was a year older than her, advised Nazerena to learn to squeeze the moisture out.

    Signal decreased t2

    He approached confidently, looking right through me. My heart skipped a beat and thumped convulsively in my stomach and on the tips of my fingers. My palms got wet and I quickly wiped them on the towel. I can't take my eyes off him. He looks at me with mock surprise.

    week 3 cerebovascular diseases

    The fingers entered her deeply and quickly. Her pussy just flowed, I felt it with my ring finger, her second hole was wet from her own juices. I took my fingers out of her and began to simply lick her juices, collecting them from her lips. I inserted my tongue into it, began to move it inward. She licked her lips again.

    Similar news:

    Uh-huh, - she mumbled, not looking up from the member. Donya swung and with all his five fingers gave a resounding slap in the face to Katya's. Jelly-like ass. The wave sent through the body shook Katya by swinging her buttocks, passed to the spheres of the breasts.



    17559 17560 17561 17562 17563